In physics and engineering the quality factor or Q factor is a dimensionless parameter that describes how under-damped an oscillator or resonator is,[1] or equivalently, characterizes a resonator's bandwidth relative to its center frequency.[2] Higher Q indicates a lower rate of energy loss relative to the stored energy of the oscillator; the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Oscillators with high quality factors have low damping so that they ring longer.

Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the bandwidth. Thus, a high Q tuned circuit in a radio receiver would be more difficult to tune, but would have more selectivity; it would do a better job of filtering out signals from other stations that lie nearby on the spectrum. High Q oscillators oscillate with a smaller range of frequencies and are more stable. (See oscillator phase noise.)

The quality factor of oscillators vary substantially from system to system. Systems for which damping is important (such as dampers keeping a door from slamming shut) have Q = ½. Clocks, lasers, and other resonating systems that need either strong resonance or high frequency stability need high quality factors. Tuning forks have quality factors around Q = 1000. The quality factor of atomic clocks and some high-Q lasers can reach as high as 1011[3] and higher.[4]

There are many alternate quantities used by physicists and engineers to describe how damped an oscillator is and that are closely related to the quality factor. Important examples include: the damping ratio, relative bandwidth, linewidth and bandwidth measured in octaves.

The concept of Q factor originated in electronic engineering, as a measure of the 'quality' desired in a good tuned circuit or other resonator
### Tagged in:

Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the bandwidth. Thus, a high Q tuned circuit in a radio receiver would be more difficult to tune, but would have more selectivity; it would do a better job of filtering out signals from other stations that lie nearby on the spectrum. High Q oscillators oscillate with a smaller range of frequencies and are more stable. (See oscillator phase noise.)

The quality factor of oscillators vary substantially from system to system. Systems for which damping is important (such as dampers keeping a door from slamming shut) have Q = ½. Clocks, lasers, and other resonating systems that need either strong resonance or high frequency stability need high quality factors. Tuning forks have quality factors around Q = 1000. The quality factor of atomic clocks and some high-Q lasers can reach as high as 1011[3] and higher.[4]

There are many alternate quantities used by physicists and engineers to describe how damped an oscillator is and that are closely related to the quality factor. Important examples include: the damping ratio, relative bandwidth, linewidth and bandwidth measured in octaves.

The concept of Q factor originated in electronic engineering, as a measure of the 'quality' desired in a good tuned circuit or other resonator

You must LOGIN to add comments