We all know the trick when multiplying by ten – add 0 to the end of the number, but did you know there is an equally easy trick for multiplying a two digit number by 11? This is it:

Take the original number and imagine a space between the two digits (in this example we will use 52:

5_2

Now add the two numbers together and put them in the middle:

5_(5+2)_2

That is it – you have the answer: 572.

If the numbers in the middle add up to a 2 digit number, just insert the second number and add 1 to the first:

9_(9+9)_9

(9+1)_8_9

10_8_9

1089 – It works every time.

If you need to square a 2 digit number ending in 5, you can do so very easily with this trick. Mulitply the first digit by itself + 1, and put 25 on the end. That is all!

252 = (2x(2+1)) & 25

2 x 3 = 6

625

Most people memorize the 5 times tables very easily, but when you get in to larger numbers it gets more complex – or does it? This trick is super easy.

Take any number, then divide it by 2 (in other words, halve the number). If the result is whole, add a 0 at the end. If it is not, ignore the remainder and add a 5 at the end. It works everytime:

2682 x 5 = (2682 / 2) & 5 or 0

2682 / 2 = 1341 (whole number so add 0)

13410

Let’s try another:

5887 x 5

2943.5 (fractional number (ignore remainder, add 5)

29435

22189271

This one is simple – to multiple any number between 1 and 9 by 9 hold both hands in front of your face – drop the finger that corresponds to the number you are multiplying (for example 9×3 – drop your third finger) – count the fingers before the dropped finger (in the case of 9×3 it is 2) then count the numbers after (in this case 7) – the answer is 27.

5. Multiply by 4

This is a very simple trick which may appear obvious to some, but to others it is not. The trick is to simply multiply by two, then multiply by two again:

58 x 4 = (58 x 2) + (58 x 2) = (116) + (116) = 232

If you need to leave a 15% tip, here is the easy way to do it. Work out 10% (divide the number by 10) – then add that number to half its value and you have your answer:

15% of $25 = (10% of 25) + ((10% of 25) / 2)

$2.50 + $1.25 = $3.75

If you have a large number to multiply and one of the numbers is even, you can easily subdivide to get to the answer:

32 x 125, is the same as:

16 x 250 is the same as:

8 x 500 is the same as:

4 x 1000 = 4,000

Dividing a large number by five is actually very simple. All you do is multiply by 2 and move the decimal point:

195 / 5

Step1: 195 * 2 = 390

Step2: Move the decimal: 39.0 or just 39

2978 / 5

step 1: 2978 * 2 = 5956

Step2: 595.6

To subtract a large number from 1,000 you can use this basic rule: subtract all but the last number from 9, then subtract the last number from 10:

1000

-648

step1: subtract 6 from 9 = 3

step2: subtract 4 from 9 = 5

step3: subtract 8 from 10 = 2

answer: 352

Multiply by 5: Multiply by 10 and divide by 2.

Multiply by 6: Sometimes multiplying by 3 and then 2 is easy.

Multiply by 9: Multiply by 10 and subtract the original number.

Multiply by 12: Multiply by 10 and add twice the original number.

Multiply by 13: Multiply by 3 and add 10 times original number.

Multiply by 14: Multiply by 7 and then multiply by 2

Multiply by 15: Multiply by 10 and add 5 times the original number, as above.

Multiply by 16: You can double four times, if you want to. Or you can multiply by 8 and then by 2.

Multiply by 17: Multiply by 7 and add 10 times original number.

Multiply by 18: Multiply by 20 and subtract twice the original number (which is obvious from the first step).

Multiply by 19: Multiply by 20 and subtract the original number.

Multiply by 24: Multiply by 8 and then multiply by 3.

Multiply by 27: Multiply by 30 and subtract 3 times the original number (which is obvious from the first step).

Multiply by 45: Multiply by 50 and subtract 5 times the original number (which is obvious from the first step).

Multiply by 90: Multiply by 9 (as above) and put a zero on the right.

Multiply by 98: Multiply by 100 and subtract twice the original number.

Multiply by 99: Multiply by 100 and subtract the original number.

You must LOGIN to add comments