Cryptosystems

One or more cryptographic primitives are often used to develop a more complex algorithm, called a cryptographic system, or cryptosystem. Cryptosystems (e.g. El-Gamal encryption) are designed to provide particular functionality (e.g. public key encryption) while guaranteeing certain security properties (e.g. chosen-plaintext attack (CPA) security in the random oracle model). Cryptosystems use the properties of the underlying cryptographic primitives to support the system's security properties. Of course, as the distinction between primitives and cryptosystems is somewhat arbitrary, a sophisticated cryptosystem can be derived from a combination of several more primitive cryptosystems. In many cases, the cryptosystem's structure involves back and forth communication among two or more parties in space (e.g., between the sender of a secure message and its receiver) or across time (e.g., cryptographically protected backup data). Such cryptosystems are sometimes called cryptographic protocols.

Some widely known cryptosystems include RSA encryption, Schnorr signature, El-Gamal encryption, PGP, etc. More complex cryptosystems include electronic cash[36] systems, signcryption systems, etc. Some more 'theoretical' cryptosystems include interactive proof systems,[37] (like zero-knowledge proofs),[38] systems for secret sharing,[39][40] etc.

Until recently, most security properties of most cryptosystems were demonstrated using empirical techniques, or using ad hoc reasoning. Recently, there has been considerable effort to develop formal techniques for establishing the security of cryptosystems; this has been generally called provable security. The general idea of provable security is to give arguments about the computational difficulty needed to compromise some security aspect of the cryptosystem (i.e., to any adversary).

The study of how best to implement and integrate cryptography in software applications is itself a distinct field; see: Cryptographic engineering and Security engineering.
### Tagged in:

One or more cryptographic primitives are often used to develop a more complex algorithm, called a cryptographic system, or cryptosystem. Cryptosystems (e.g. El-Gamal encryption) are designed to provide particular functionality (e.g. public key encryption) while guaranteeing certain security properties (e.g. chosen-plaintext attack (CPA) security in the random oracle model). Cryptosystems use the properties of the underlying cryptographic primitives to support the system's security properties. Of course, as the distinction between primitives and cryptosystems is somewhat arbitrary, a sophisticated cryptosystem can be derived from a combination of several more primitive cryptosystems. In many cases, the cryptosystem's structure involves back and forth communication among two or more parties in space (e.g., between the sender of a secure message and its receiver) or across time (e.g., cryptographically protected backup data). Such cryptosystems are sometimes called cryptographic protocols.

Some widely known cryptosystems include RSA encryption, Schnorr signature, El-Gamal encryption, PGP, etc. More complex cryptosystems include electronic cash[36] systems, signcryption systems, etc. Some more 'theoretical' cryptosystems include interactive proof systems,[37] (like zero-knowledge proofs),[38] systems for secret sharing,[39][40] etc.

Until recently, most security properties of most cryptosystems were demonstrated using empirical techniques, or using ad hoc reasoning. Recently, there has been considerable effort to develop formal techniques for establishing the security of cryptosystems; this has been generally called provable security. The general idea of provable security is to give arguments about the computational difficulty needed to compromise some security aspect of the cryptosystem (i.e., to any adversary).

The study of how best to implement and integrate cryptography in software applications is itself a distinct field; see: Cryptographic engineering and Security engineering.

You must LOGIN to add comments