Brute force attack-DES

by Mohan 2012-09-21 09:26:23

Brute force attack

For any cipher, the most basic method of attack is brute force — trying every possible key in turn. The length of the key determines the number of possible keys, and hence the feasibility of this approach. For DES, questions were raised about the adequacy of its key size early on, even before it was adopted as a standard, and it was the small key size, rather than theoretical cryptanalysis, which dictated a need for a replacement algorithm. As a result of discussions involving external consultants including the NSA, the key size was reduced from 128 bits to 56 bits to fit on a single chip.[22]
The EFF's US$250,000 DES cracking machine contained 1,856 custom chips and could brute force a DES key in a matter of days — the photo shows a DES Cracker circuit board fitted with several Deep Crack chips.

In academia, various proposals for a DES-cracking machine were advanced. In 1977, Diffie and Hellman proposed a machine costing an estimated US$20 million which could find a DES key in a single day. By 1993, Wiener had proposed a key-search machine costing US$1 million which would find a key within 7 hours. However, none of these early proposals were ever implemented—or, at least, no implementations were publicly acknowledged. The vulnerability of DES was practically demonstrated in the late 1990s. In 1997, RSA Security sponsored a series of contests, offering a $10,000 prize to the first team that broke a message encrypted with DES for the contest. That contest was won by the DESCHALL Project, led by Rocke Verser, Matt Curtin, and Justin Dolske, using idle cycles of thousands of computers across the Internet. The feasibility of cracking DES quickly was demonstrated in 1998 when a custom DES-cracker was built by the Electronic Frontier Foundation (EFF), a cyberspace civil rights group, at the cost of approximately US$250,000 (see EFF DES cracker). Their motivation was to show that DES was breakable in practice as well as in theory: "There are many people who will not believe a truth until they can see it with their own eyes. Showing them a physical machine that can crack DES in a few days is the only way to convince some people that they really cannot trust their security to DES." The machine brute-forced a key in a little more than 2 days search.

The next confirmed DES cracker was the COPACOBANA machine built in 2006 by teams of the Universities of Bochum and Kiel, both in Germany. Unlike the EFF machine, COPACOBANA consists of commercially available, reconfigurable integrated circuits. 120 of these field-programmable gate arrays (FPGAs) of type XILINX Spartan3-1000 run in parallel. They are grouped in 20 DIMM modules, each containing 6 FPGAs. The use of reconfigurable hardware makes the machine applicable to other code breaking tasks as well.[23] One of the more interesting aspects of COPACOBANA is its cost factor. One machine can be built for approximately $10,000.[24] The cost decrease by roughly a factor of 25 over the EFF machine is an example of the continuous improvement of digital hardware. Adjusting for inflation over 8 years yields an even higher improvement of about 30x. Since 2007, SciEngines GmbH, a spin-off company of the two project partners of COPACOBANA has enhanced and developed successors of COPACOBANA. In 2008 their COPACOBANA RIVYERA reduced the time to break DES to less than one day, using 128 Spartan-3 5000's. Currently SciEngines RIVYERA holds the record in brute-force breaking DES, having utilized 128 Spartan-3 5000 FPGAs.[25] Their 256 Spartan-6 LX150 model has even lowered this time.

You must LOGIN to add comments